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A. Statement of the Problem Studied 

The work during this contract period focused on phenomena at nanostructured metal and 

semiconductor surfaces, which are probed using short-pulse photoemission. Specifically, the 

program was to investigate the low-dimensional quantum confinement of electrons on spatially- 

patterned surfaces of single-crystal metals. It also aimed to expand the applications, the 

technique, and the instrumentation for nonlinear optical techniques of surface electrons. 

Electronic systems of reduced dimensionality are of interest for a variety of applications 

for electronic devices. In addition, the thin-film metallic structures that are currently under 

discussion for magnetic-memory applications, also utilize quantum confinement. This 

investigation has focused on the use of excited-state non-linear spectroscopy as the technique for 

the probing of electrons on these metal surfaces. In addition, we briefly describe a new 

technique probing the surfaces of semiconductors at ~ lOOÄ-length scale under ambient 

conditions, As a result, the work has built on the considerable experimental base at Columbia for 

the study of laser interactions at surfaces, developed on previously supported ARO Research 

Programs and leveraged by funding from other sponsors including NSF, AFOSR, JSEP, DOE, 
and AT&T. 

B. Summary of Most Important Results 

In this report we will first describe the development of new instrumentation for 

femtosecond surface probing. We will then summarize the results obtained in using this 

instrumentation for probing ultrasmall nanostructures on surfaces. Finally, we will provide a 

brief summary of recent experiments on probing semiconductor surfaces. 

1. New Instrumentation for Femtosecond Probing of Surface Electron Dynamics 

a) Compact and Efficient Tripled Femtosecond Ti-Sapphire Laser System 

In our laboratories we have developed a new instrument for dosing time and angle 

resolved measurements of electron dynamics at surfaces using a femtosecond mode-locked 

Ti:Sapphire laser system as its backbone. Accurate surface electron dynamics studies require 

ultrafast-pulse time-resolved measurements with pulse widths of a few tens of femtoseconds. In 

addition, techniques with low laser pulse repetition rates are limited for surface dynamic 

measurements due to its poor signal-to-noise ratio. Ultrashort pulses at high repetition rates give 



high s/n ratios even for multiphoton electron excitation in a pump-probe configuration, thus 

providing an excellent tool for the electronic structure and dynamics studies. 

An Ar+ laser system is used as a pump for the fs Ti:Sapphire laser system and operated at 

a pump power level of about 6W. As the mode-locked laser requires a spatially stable pump 

beam, we have developed a laser beam pointer stabilizing system9 which corrects the temporal- 

spatial drift of the Ar+ laser pump beam and maintains its spatial drift to within a few 

micrometers at the focal point inside the Ti:Sapphire crystal. The Ti:Sapphire laser system is a 

tunable source (750nm-980nm) capable of providing mode-locked laser pulses in the range of 

60-120fs at a repetition rate of 90MHz and average powers ranging from 0.6W to 1W, although 

higher output power levels usually have a degraded spatial profile. A typical operation involves 

a train of 90MHz pulses of 90fs duration and average power of 0.7W (at 5.5W Ar+ pump power) 

at 800nm (peak spectral intensity) corresponding to the pump conversion efficiency of ifa^ = 

13%. 

The setup (see Fig. 1) also includes diagnostics which allow for an easy calibration of the 

Ti:Sapphire laser system as well as the second harmonic (SH) and the third harmonic (TH) beam 

systems; see below. These include a real-time fs autocorrelator and calibrated grating system for 

convenient spectrum profile measurements. 

The Ti.Sapphire output laser beam is efficiently doubled (peak spectral intensity at 

400nm) in a 1.5mm thick lithium triborate (LBO, LiB305) nonlinear crystal using Type I 

collinear phase matching (ooe) which allows for the non-critical phase-matching (NCPM) and 

thus higher conversion rates. Efficiencies as high as ^HG = 33% have been obtained. The 

measured average output power is about 160mW at 0.6W fundamental pump, which is in 

excellent agreement with the" theoretically predicted value, calculated from the expressions for 

the complex envelope of the SH radiation10 and the SHG efficiency r] 
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where Ai(t,z) and A2(t,z) are the fundamental and the second harmonic complex envelopes, Ak is 

the phase mismatch, L is the crystal length, a2 is the nonlinear parameter given by 

a2=87t -deff/(nA.), where doff is the effective nonlinear coefficient and X is the wavelength of the 
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Figure 1. Femtosecond optical apparatus for probing electronic dynamics near nanostructures. 

fundamental beam. vgi and vg2 are the group velocities, and P\ and P2 are the average power 

levels at ©1 and ©2, respectively. In the calculation, the sech profile has been assumed for the 

complex envelope at the fundamental wavelength. 

The generated SH and the fundamental beam are further frequency-mixed in a second 

0.5mm thin nonlinear crystal, beta barium borate (BBO, (ß-BeB204), using Type-I phase 

matching (ooe). The output signal, the third harmonic (peak spectral intensity at 267nm), has an 

average power of 40mW corresponding to the efficiency of r\ THG = 27% with respect to the SH 



Signal level. We are currently testing a much thinner BBO crystal so as to achieve resolution at 

even high short time scales. 

As they propagate in dispersive media (focusing and reflecting elements in the setup, 

LBO and BBO crystals), all three wavelength beams broaden, thus reducing their peak power 

levels and increasing pulse widths (to a few hundreds of fs). We have therefore setup a four- 

prism sequence pulse compressor, which dramatically restores the third harmonic pulse widths to 

the initial pulse width values of the fundamental beam. The SH (400nm) and the TH (267nm) 

pulses are then controllably time-delayed. The fundamental SH and TH pulses are focused onto 

the sample. 

Monochromatic spectrum have been taken from a Cu(lll) surface with the TH UV 

pulses to give excellent s/n ratio for the n=l image state. The photon energy was 4.6seV and the 

average power was 25mW. The spectrum was taken with a 127° spherical-sector energy 

analyzer. The setup also enables us to do angle-resolved measurements. Further time-resolved 

experiments on Cu have shown controllable, fs-scale time pump-probe measurements can be 

made. 

b) Instrumentation for Surface Analysis and Angle- and Time-Resolved Nonlinear 
Photoelectron Spectroscopy 

Our instrumentation for the measurements of the excited electronic structure at surfaces 

and interfaces has been improved significantly over the last two years it now represents a unique 

university instrument for these measurements. The system now consists of: i) an enhanced UHV 

(ultrahigh vacuum) chamber suitable for multitechnique measurements, ii) basic surface cleaning 

and diagnostic tools:   an ion sputter gun, LEED (low energy electron diffraction) for lattice 

structure analysis, and AES (Auger electron spectroscopy) for chemical composition at the 

surface, Hi) a UHV compatible evaporator, which allows in situ growth of various layered 

structures with thicknesses of from submonolayer to thousands-of-Ä's, iv) an UPS (ultraviolet 

photoemission spectroscopy) system for measurement of initial, occupied electronic states, 

providing information needed to assess the occupied electronic structure at the surface/interface, 

and v) two electron-energy analyzers.   Regarding the latter, the two systems consist of a 

compact, high-resolution analyzer, suitable for angle-resolved measurements in a wide range of 

angles, and a larger, 100mm hemispherical analyzer; useful in high-sensitivity UPS, AES as well 

as in high-resolution nonlinear photoemission measurements. 
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2. Measurements of the Excited Electronic Structure of Low-Dimensional Angstrom-Size 
Features 

a) Coherent Electron Confinement by a 10Ä Lateral Superlattice 

Low-dimensional surface systems have attracted much attention recently because of their 

fundamental and technological implications. Traditionally, work in these systems has utilized 

either two-dimensional confinement,1 that available at heteroj unctions in electronic devices,2 or 

for lower dimensionality, through lithographic patterning of 'wires' or 'dots' on single-crystal 

surfaces. Metallic systems with spacer-layer structures have been observed to possess quantum- 

well states4 and display effects of oscillatory magnetic coupling5 as seen in superlattices potential 

applications in magnetic storage.6 Low dimensionality can be effectively realized and utilized7"11 

via the use of the natural atomic-scale features on vicinally cut surfaces, such as the stepped 

surfaces created by a small-angle miscut from a low-index plane on a single-crystal metal. The 

extremely small length scales in this case means that high confinement energies can be obtained, 

and hence operation at room temperature is possible. 

Recently, using our nonlinear photoemission system, we have made the first direct 

observation of the formation of a lateral superlattice, effects the movement of electrons parallel 

and just above the stepped surface. Our results show that the lateral periodicity (~11Ä) of the1 

step potentials on a bare stepped surface leads to back-folding of the electrons dispersion within 

the surface Brillouin zone. A surface preparation, which pins the surface steps with impurity 

atoms, sharpens this characteristic dispersive behavior to the point that it can be followed to the 

edges öf the lateral Brillouin zone formed by the step lattice. The resulting reduction of the 

surface Brillouin zone by a factor of 4.5, compared to that of planar Cu(001), causes an 

oscillatory dispersive behavior where the electron energy is a multivalued function of k as seen 

in the first two Brillouin zones of such a lateral superlattice formed by the regular steps. One- 

dimensional superlattice effects appear to have not been seen previously in the band structure of 

nanostructured surfaces. Our results are remarkable in that the quantum confinement seen in this 

case is at dimensions much smaller than those typically seen in the usual electronics materials 

system. 

The dispersive behavior measured in our case is shown in Fig. 2(a) and is in accord with 

that expected from a lateral surface superlattice, which can be provided by a stepped metal 



surface with a periodic modulation of the surface potential from the steps. A sketch of the 

relevant real space lattice and Brillouin zones on the stepped Cu(QQl) is shown in the inset of 

Fig. 2(b). For image-state electrons, the effective magnitude öf the step potential depends on the 

average distance of the electron from the crystal plane; in fact, it is interesting that step-edge 

perturbation in the surface potential is sufficient to form an electronic structure of a lateral 

superlattice. Electrons in such a ID periodic potential exhibit new Brillouin zones, whose extent 

in k-späce is determined by the reciprocal step-lattice vector Of g=2 ft/d. The electrons excited to 

the image state will experience Bragg reflections, which result in a multivalued dispersion 

function which repeats itself at every multiple of k = n/d, within the first surface Brillouin zone 

(0 to 1.23 Ä"1) of the flat (001), as seen in Fig. 2(a). In addition, ID Kronig-Penny calculations 

show that the superlattice potential would also be expected to provide lateral confinement for the 

image-state electron leading to a larger effective mass.12 

b) How Electrons Move Near Nanostructures 

Electronic confinement and movement is central to a variety of novel electron and 

magnetic nanoscale devices. There has been a recent growth in research interest in electron 

motion and electronic structure in the vicinity of nanoscale features on single-crystal metals.8,9,13 

Lateral quantum confinement of electrons on metal surfaces was seen resulting in sharp images 

of electron standing waves in the vicinity of surface scattering centers, such as Angstrom-high 

step edges, through STM studies.9 In conjunction with the interest in lateral confinement of sp 

surface-state electrons, several recent questions have arisen on the magnitude and nature-of 

scattering at the lateral barrier.14 

In our investigation of electron confinement by nanoscale features at or near the surface, 

we have used measurements of the dispersion of a well characterized series of surface states to 

characterize the response of surface electrons to a regular array of steps on a single-crystal 

copper surface, Cu(775). Since each of the states has different average distances above the 

crystal surface, the measurements provide insight into the effects of step potential at three values 

-of z... We probed the n=0 (occupied) and the n=l,2 (unoccupied) states, in the terminology of 

Smith,15 on both flat Cu(lll) and stepped Cu(775) for comparative studies. The n=0, crystal- 

induced surface state is located within the plane of the last lattice points while the n=l and n=2 

surface Rydberg states (or image states) have an average location at 3 and 12 Ä respectively 
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from the jellium edge. Our measurements of both the occupied and unoccupied states have used 

angle-resolved resonant monochromatic and Dichromatic two-photon photoemission (2PPE). By 

tuning the photon energy and photoelectron detection angle, resonant excitation from the n=0 

state to n=l,2 states could be achieved and hence the energy bands of both the initial and 

intermediate states could be mapped out. 

Figure 3 shows the energy dispersion curves (as a function of electron momentum 

parallel to the surface) of the n=0,l, and 2 states on stepped Cu(775), derived from numerous 

resonant 2PPE measurements.16 Note that on flat Cu(lll), all the three dispersion curves are 

symmetric about k = 0 or the surface normal (not shown here). In contrast, Fig. 3 shows that on 

stepped Cu(775) the dispersion minimum of both the n=0 and n=l states are shifted in the k- 

space. However, in the case of the n=2 state the dispersion curve was still centered at k =0. 

The energy band minimum of the n=0 state was found to be located at k ~ 0.22 A"1, 

corresponding to a + 17° detection angle for photon energies close to 2.18 eV; and the n=l state 

minimum was shifted to k ^ 0.09 A"1, or +8-9°, a value which corresponds to the direction of 

the terrace normal, (111). Such results show that electrons at different heights, even within a 

nanometer, from the surface exhibit different dispersive behaviors, which is in accord with the 

nature of the interactions with the surface steps. Specifically, the n=l electron is oriented to the 

(111) terrace while the n=2 state, located farther away from the surface, is oriented to the general 

(775) surface. The embedded n=0 state dispersion was found to be determined by the bulk band 

projection onto the specific (775) surface and not related to the magnitude of the step potential. 

3. Two-Photon Photoemission from Si(lll) 

Physical understanding of the transient phenomena of semiconductors is very important 

for developing future-generation microelectronic technology. Fundamental studies of hot carrier 

dynamics are essential to predict the performance and reliability of the ultrafast semiconductor 

devices. Many surface chemistry phenomena such as absorption and desorption are also related 

to the transient processes in semiconductors. As a result, studies of electron dynamics in crystals 

have attracted much attention for the last decade and have included studies on metals, 

semiconductors with direct or indirect band gap, as well as reconstructed surfaces such as 

Si(100)2xl,Si(l 11)2x1, etc. 

11 
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Time-resolved multiphoton photoemission spectroscopy has proven to be a particularly 

powerful technique for probing carrier dynamics at surfaces and interfaces. We have probed the 

electron dynamics at the Si(l 11)7x7 surface using angle- and time-resolved two-photon 

photoemission experiments. In these experiments, either a monochromatic or a bichromatic 

pump-probe beam configuration was used. The pump laser pulses populate the conduction states 

and unoccupied surface states, the lifetime of which is in the range of tens of femtoseconds. The 

photoelectrons on these states are then excited by the probe pulse, with no time delay. We are 

able to study the decaying channels of hot electrons if a time delay is preset between the probed 

and pump pulses. Nanosecond pulses with tunable photon energy were first used to study the 

unoccupied electronic states on Si(l 11)7x7 surface. By varying the polarization of the probe 

light, we observed a distinct difference of the photoemission signals with respect to the type of 

polarization (s or p). The results provided a strong experimental support that the "CBM 

shoulder," reported earlier by M.W. Rowe, et al., does in fact come from a surface resonance. 

This relatively long lifetime unoccupied surface state has also been examined by inverse 

photoemission. 

The electron dynamics can be further studied by femtosecond laser pulses. The 

experimental setup used a variable time delay between femtosecond (fs) pump and probe pulses, 

which were generated by frequency doubling and tripling laser pulses from a Ti:sapphire fs laser 

system. This setup which enables the relaxation channels of electrons excited above the 

conduction-band minimum (CBM) to be measured with subpicosecond time resolution is 

currently being tested. 

4. Recent Experiments 

Since the end of this contract we have completed several experiments using our 

Femtosecond pump-probe experiments. The results in these experiments, two examples of 

which are shown in Figures 4 and 5, are briefly summarized in our recent talks for the Centennial 

APS meeting. We include the abstracts for these talks in the Appendix. 

13 
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APPENDIX 

Abstract Submitted 
for the MAR99 Meeting of 

The American Physical Society 

Sorting Category: 14.5 (Experimental) 

K-dependence of Image State Lifetime Measurements 
on Cu(lll) Surface with Time-resolved and Angle-resolved 
Photoemission HIDONG KWAK, A. M. RADOJEVIC, X. J. SHEN, 
R. M. OSGOOD JR., Columbia Radiation Laboratory, Columbia Uni- 
versity — We used femtosecond time-resolved and angle-resolved two- 
photon photoemission spectroscopy to study dynamics of image states 
on Cu(lll) surface. This is the first k-space state resolved study of im- 
age states lifetimes. Our experiments were conducted on a clean Cu(lll) 
prepared in an ultrahigh vacuum chamber. The output of Ti:sapphire 
oscillator was frequency doubled and tripled to generate 3.1 eV and 4.65 
eV beams using nonlinear crystals. An 80 fs, 400 nm and a time de- 
layed 100 fs, 266 nm laser beams were coincident on the sample at 70 
degrees angle of incidence. Photoemitted electrons due to the pump and 
probe correlation were detected as a function of time-delay. The peak 
of the correlation signal is delayed with respect to the zero time delay, 
which is found by measuring the signal of the direct transition via vir- 
tual intermediate states. This delay is due to the finite lifetime of the 
intermediate image states. Quantitative lifetimes and pure dephasing 
times of the image states at different states in k-space were obtained 
by fitting the correlation data with solutions for the three-level optical 
Bloch equations. A model explaining the k-dependence lifetime of im- 
age states is presented. This work was supported by the Army Research 
Office and the Columbia JSEP Program. 
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Abstract Submitted 
for the MAR99 Meeting of 

The American Physical Society 

Sorting Category: 14.9.1 (Experimental) 

Two-Photon Photoemission Study of Stepped Cu(lll) 
Surface Using Femtosecond Laser Pulses X. J. SHEN, HIDONG 
KWAK, A. M. RADOJEVIC, R. M. OSGOOD JR., Columbia Radi- 
ation Laboratory, Columbia University — Multiphoton photoemission 
using ultrafast laser pulses is a powerful technique for probing carrier dy- 
namics at surfaces and interfaces. Angle- and time-resolved two-photon 
photoemission measurements were performed on stepped single-crystal 
copper surfaces with features of ~14 Ä terrace width and ~2 A step 
height. The experimental setup used a variable time delay between a 
femtosecond pump (~267 nm and 100 fsec) and probe (~400 nm and 80 
fsec) pulse, which were generated by frequency doubling and tripling the 
laser pulses from a Ti:sapphire fsec laser system. Based on the optical 
Bloch equations for a three level system calculations, we were able to 
obtain the lifetimes of the n=l image state electrons by fitting the corre- 
lation data. Electrons with bigger momentum parallel to the surface had 
a shorter lifetime, which we attributed to the total effects of the presence 
of the step potentials and the energy resonance with empty bulk states. 
A comparison of the electronic relaxation dynamics between fiat and 
stepped Cu(lll) surfaces will be discussed. Financial support of this 
work by the Army Research Office and the Columbia JSEP Program is 
gratefully acknowledged. 
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